Electrowetting on dielectric experiments using graphene.

نویسندگان

  • Xuebin Tan
  • Zhixian Zhou
  • Mark Ming-Cheng Cheng
چکیده

We report electrowetting on dielectric (EWOD) experiments using graphene; a transparent, flexible and stretchable nanomaterial. Graphene sheets were synthesized by chemical vapor deposition, and transferred to various substrates (including glass slides and PET films). Reversible contact angle changes were observed on the Teflon-coated graphene electrode with both AC and DC voltages. Nyquist plots of the EWOD reveal that the graphene electrode has higher capacitive impedance than gold electrodes under otherwise identical conditions, suggesting a lower density of pin-holes and defects in the Teflon/graphene electrode than in the Teflon/gold electrode. Furthermore, we have observed reduced electrolysis of the electrolyte and smaller leakage current in the dielectric layer (Teflon) on graphene electrodes than on Au electrodes at the same Teflon thickness and applied voltage. We expect that the improved EWOD properties using graphene as an electrode material will open the door to various applications, including flexible displays and droplet manipulation in three-dimensional microfluidics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-low voltage electrowetting using graphite surfaces.

The control of wetting behaviour underpins a variety of important applications from lubrication to microdroplet manipulation. Electrowetting is a powerful method to achieve external wetting control, by exploiting the potential-dependence of the liquid contact angle with respect to a solid substrate. Addition of a dielectric film to the surface of the substrate, which insulates the electrode fro...

متن کامل

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

The detection of local dielectric properties is of great importance in a wide variety of scientific studies and applications. Here, we report a novel method for the characterization of local dielectric distributions based on surface adhesion mapping by atomic force microscopy (AFM). The two-dimensional (2D) materials graphene oxide (GO), and partially reduced graphene oxide (RGO), which have si...

متن کامل

Toward individually tunable compound eyes with transparent graphene electrode.

We present tunable compound eyes made of ionic liquid lenses, of which both curvatures (R 1 and R 2 in the lensmaker's equation) can be individually changed using electrowetting on dielectric (EWOD) and applied pressure. Flexible graphene is used as a transparent electrode and is integrated on a flexible polydimethylsiloxane (PDMS)/parylene hybrid substrate. Graphene electrodes allow a large le...

متن کامل

Sensitivity Enhancement of Ring Laser Gyroscope Using Dielectric-Graphene Photonic Crystal

In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring...

متن کامل

Ion and liquid dependent dielectric failure in electrowetting systems.

Electrowetting devices often utilize aqueous solutions with ionic surfactants and inorganic salts to modify the electrowetting response. It has been observed in low-voltage electrowetting devices (thin dielectric, <12 V) that a frequent onset of dielectric failure (electrolysis) occurs with use of ionic solutes such as potassium chloride (KCl) or sodium dodecyl sulfate. More detailed current-vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 23 37  شماره 

صفحات  -

تاریخ انتشار 2012